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Figure 7.1 Comparison of the PpT behavior of methane (left) and pentane (vight) demonstrating the
qualitative similarity which led to corresponding states’ treatment of fluids. The lines are
calculated with the Peng-Robinson equation to be discussed later. The phase envelope is an
approximation sketched through the points available in the plots. The smoothed experimental data
are from Brown, G.G, Sounders Jr., M., and Smith, R.L., 1932. Ind. Eng. Chem., 24:513. Although

not shown, the Peng-Robinson equation is not particularly accurate for modeling liguid densities.
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Figure 7.2 The Peng-Robinson lines from Fig. 7.1 plotted in terms of the reduced pressure at T, = (1.8, (1.9,
1.0, 1.1, and 1.3, demonstrating that critical temperature and pressure alone are insufficient to

accurately represent the P-V-T behavior Dashed lines are for methane, solid lines for pentane.
The figure is intended to make an illustrative point. Accurate calculations should use the com-

pressibility factor charts developed in the next section.
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Arrhenius Behavior
Psat ~ eXp(-Ea/kT)
Log(P) ~ 1/T

Slope 1s an activation energy for Psat
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Figure 7.3 Reduced vapor pressures plotted as a function of reduced temperature for six fluids
demonstrating that the shape of the curve is not highly dependent on structure, but that
the primary difference is the slope as given by the acentric factor.

nearly linear, the slopes are different. In fact, we may characterize this slope with a third empirical

parameter, known as the acentric factor, . The acentric factor is a parameter which helps to spec-
ify the vapor pressure curve which, in turn, correlates the rest of the thermodynamic variables.?
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Acentric factor
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The acentric 1actor L is a conceptual number introduced by Kenneth Pitzer in 1855, proven 10 be very uselul in the description of matter.”'! It has
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Z = Zo+a)Zl

Sd
w= —| —loglo[ 7 'J = acentric factor

7.3. Generalized Compressibility Factor Charts

7.3

7.2

7.1 0The compress-
ibility factor.

P-V-T behavior can be generalized interms of 7, P, and w. The original correlation was

presented by Pitzer, and is given in the form

z=2"+w?

7.3
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Figure 7.4 Generalized charts for estimating the compressibility factor. z% applies the Lee-Kesler equation
using @ = (.0, and (Z’ ) is the corrvection factor for a hypothetical compound with ® = 1.(). Note
the semilog scale.



Example 7.1 Application of the generalized charts

Estimate the specific volume in cm3fg for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the
compressibility factor charts and compare to the experimental values® of 70.58 and 3.90, respec-
tively.

Solution: ® =0.228 and T, = 310/304.2 = 1.02 for both cases (a) and (b), so,
(a) P, = 8/73.82 = 0.108; from the charts, Z® = 0.96 and Z' =0, so Z=0.96.

V=ZRT/(P-MW) = (0.96-83.14-310)/(8-44) = 70.29, within 0.4% of the experimental value.

(b) P, =75/73.82 = 1.016 = 1.02; Note that the compressibility factor is extremely sensitive to
temperature in the critical region. To obtain a reasonable degree of accuracy in reading the
charts, we must interpolate between the reduced temperatures of 1.0 and 1.05 which we can read
with more confidence.

AtT,=1.0,2°=0.22 and Z' = —0.08 so Z= 0.22 + 0.228-(~0.08) = 0.202
AtT,=1.05,Z°=0.58 and Z'=0.03, s0 Z=0.58 + 0.228-(0.03) = 0.587
Interpolating, Z = 0.202 + (0.587 — 0.202)-2/5 = 0.356

V=ZRTH(P-MW) = (0.356:8.314:310)/(7.5-44) = 2.78, giving 29% error relative to the experi-
mental value.
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/!’" Z=1+Bp+Colr+Dp*+ ... 7.4
T Z=1+ B(P/RT) 75

where B is a function of 7. Note that Eqn. 7.5 indicates that Z varies linearly with pressure along an
isotherm. Look back at Fig. 7.4 and notice that the region in which linear behavior occurs is lim-
ited, but in general, the approximation can be used at higher reduced pressures when the reduced
temperature 1s higher. The virial equation can be generalized in reduced coordinates as given by
Eqns. 7.6-7.9.° Eqn. 7.10 checks for restriction of the calculation to the linear Z region.

Z=1+(B"+wB"YP,/T. or Z=1+BPRT 7.6
where B(T) = (B" + wB")RT./P, 7.7
B"=0.083 — 0.422/T,1- 7.8

B'=0.139 - 0.172/T,*? 7.9

Subject to T, > 0.686 + 0.439P, or ¥, > 2.0 7.10

0Vlrlal aquation.
B is known as the
sacond virdal coeffi-
clent, anditisa
measure of the
slope of the Z-chart
isotherms in the lin-
ear region.

developed to render the Pitzer correlation in terms of computer-friendly equations. The Lee-Kesler

equation was used to generate Fig. 7.4.
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Why Virial Expansion?

1) In situations where you want simple derivatives of P, V or Z in density.
Density fluctuations can be observed at zero angle scattering (light,

neutrons, X-rays) as the inverse of the isothermal compressibility, xr =-1/V
(dV/dP)s, so the first derivative of P as a function of p, which is B2(T), can be

easily measured. This can also be measured in an osmotic pressure
measurement using a semipermeable membrane.

2) B>(T) can be calculated from an integral of the potential energy u(r) between
atoms/particles, from quantum or molecular or coarse grain theory.

oC

1 )
B = 2,¢N,J' (1 e (—i)]r“dr 7.59
1) P\

3) B2(T) can be calculated from the radial distribution function, from simulations
and measurements.

2
rla

Figure 7.13 The radial distribution function
Jfor the hard-sphere fluid at a
packing fraction of bp = 0.4.



Example 7.2 Application of the virial equation

Estimate the specific volume in cm®/g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the
virial equation and compare to the experimental values of 70.58 and 3.90, respectively.

Solution: = 0.228 and 7, = 310/304.2 = 1.02 for both cases (a) and (b), so,

B"=0.083 — 0.422/1.02"6=-0.326
B'=0.139 - 0.172/1.02%% = —0.0193
B(T)P /RT, = (B" + ®B") = (-0.326 + 0.228:(-0.0193)) = -0.3304

(a) P,=8/73.82=0.108:50Z=1+ (B" + wB])P, /T,=1-0.3304-0.108/1.02 = 0.965

V=ZRT/(P-MW)=(0.965-83.14-310)/(8-44) = 70.66, within 0.1% of the experimental
value.

(b) P, = 75/73.82 = 1.016; applying Eqn. 7.10, 0.686 + 0.439-1.016 = 1.13 = T, = 1.02.
Therefore, the virial equation may be inaccurate using only the second virial
coefficient.
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7.5 CUBIC EQUATIONS OF STATE

The van der Waals Equation of State

p= RT _a _ pRT _

V=b 12 1-bp

where p = molar density = n/V.

2T,
64 P

c

a=

7 = [+Zrep+zut!: | +

’ RT,
N 2=
8P,
bp _ap
|-bp RT

No acentric factor

(I-bp)

a
- =L 7.12 0V:-.m der Waals

RT EOS.

7.13

7.14 oThe van der
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From Concepts in Thermal Physics

Express the van der Waals equation of state in terms of a virial ex-
pansion and hence find the Boyvle temperature in terms of the critical
temperature.

Solution:

The van der Waals equation of state can be rewritten as

= (26.41)

pV = - +W'

RT a RT b\~! a
V-»b V2 V 1

and using the binomial expansion, the term in brackets can be expanded
into a series, resulting in

» 2 3
ﬂ=|+l(b_i)+/%\ +{§\ +oe, (26.42)

which is in the same form as the virial expansion in eqn 26.40 with

B(T) = b - RLT (26.43)
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Van der Waals Equation as a Cubic EOS

V3P —V2(bP+RT)+Va—ab =0

_ ZRT

P

Z3(RT)3® Z4(RT)? (b RT) ZRTa P
—r7 2 ~p )= ~®=



RT a
P== -2 . . I
-b 2 The Peng-Robinson Equation of State | """~ "=
Z= ot ___90
(1-bp) RT
Ome Peng- The Peng-Robinson equation of state (EOS) is given by:
Robinson EOS.
Note that z is a tem- RTp a p2 1 a b P
erat P= - or Z = - : 7.15

dont :;Tam?mz (1-bp) 142bp-b2p? (1-bp) bRT 14 2pp—b2p?
a conslant. Note the

dependence onthe  where p = molar density = n/F b is a constant, and @ depends on temperature and acentric factor,”
acentric factor.

R'T? T
a=a.; a,=045723553 — b =0.07779607R =< 7.16
P, P,
a=[1+x(1- [T)* x=037464 + 1.54226 0 —0.26992 " 7.17
7 = | +Zrep 4 Zatlt — | 4 bp a bp 7.19

I—bp bRT 1+ 2bp—b2p?

a —a.x, Tr
b "T/"_ 7.8 7= |4 zrep v qatt = | 4 Do _ap 7.14 0Th
]—bp RT e van der
Waals equation \
p-RT _a _ pRT .o o z._1 __ap
V=b 12 1-bp (1-bp) RT
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Figure 7.5 Illustration of the prediction of isotherms by the Peng-Robinson equation
of state for CO, (T,=304.2K)at 275 K, 290K, 300K, 310 K, 320 K, and 350 K.
Higher temperatures result in a high pressure for a given volume. The “humps”

are explained in the text. The calculated vapor pressures arve 36.42 bar at 275 K,
53.2 bar at 290 K, and 67.21 bar at 300 K.
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7.6 SOLVING THE CUBIC EQUATION OF STATE FOR Z

Dimensionless form for equations of state

Z=PV/RT = P/pRT

Defining dimensionless forms of the parameters

A =aP/R°T?

results in the lumped variables

B =bP/RT

bp = B/Z; ap/RT = A/Z

The Peng-Robinson equation of state becomes

Z=—t
(1-B/Z)

A

B

B/Z

| +2B/Z—(B/Z)?

7.20

7.21
7.22

7.23

7.24

Rearranging the dimensionless Peng-Robinson equation yields a cubic function in Z that must be

solved for vapor, liquid, or fluid roots:

Z2—(1-B)Z*+ (4 -3B*-2B)Z—(AB -B*-B°) =0

7.25
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Figure 7.5 Illustration of the prediction of isotherms by the Peng-Robinson equation
of state for CO, (T,=304.2K)at 275 K, 290K, 300K, 310 K, 320 K, and 350 K.
Higher temperatures result in a high pressure for a given volume. The “humps”

are explained in the text. The calculated vapor pressures arve 36.42 bar at 275 K,
53.2 bar at 290 K, and 67.21 bar at 300 K.
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Figure 7.6 Comparison of behavior of cubic in Z for the Peng-Robinson equation of state at several
conditions. The labels Z,,,, and Z,1;in the upper left are described in the iterative description

in Appendix B.
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Methods of Solving the Cubic Equation

Engineering applications typically specify P and 7, and require information about V. Solution of the
equation of state in terms of Z is preferred over solution for }; and we can subsequently find F using

V=ZRT/'P 7.26

The value of Z often falls between 0 and 1. (See Fig. 7.4 on page 257.) V often varies from 50-100
em’/mole for liquids to near infinity for gases as P approaches zero. It is much easier to solve for

Iterative Method

The Newton-Raphson method is described in Appendix B. The Newton-Raphson method uses an
initial guess along with the derivative value to rapidly converge on the solution.

09 4
0.8 -
07 4
06 1
N 05 4
04 -
0.3 1
0.2 1
014
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We seek the value of Z where ' = (. Suppose we have made an initial guess Z,; which gives a
value F;, as shown in the upper-left graph in Fig. 7.6 on page 265. We are seeking a value of Z
that results in 7 = 0. If F, 4 1s the current value, and if we use the derivative of /' as a linear approxi-
mation of the function behavior, then 0 =m - Z.,, + b, (where the slope m can be calculated analyt-
ically from Eqn. B.37 as dF/dZ = (3Z* — 2(1 — B)Z + (A — 3B* - 2B)). Since the current point is on
the same line, we may also write F,y = m - Z,q + b. Taking the difference we get 0 — Fyq =m -
(Zow—2ola) + (b—b) or rearranging, —F\/im + Z | = Z,..... Since m = (dF/dZ), wehave Z ., = Z 4 —
Fi(dF/dZ). The procedure can be repeated until the answer is obtained. A summary of steps is:

I. Guess Z 4= | or Z, ;=0 and compute F (Z,4)-

2. Compute dF/dZ.

3. Compute Z,.., = Z,q — FI(dF/dZ).

4. 1f [AZ/Z o = LLE = 5, print the value of Z,,,, and stop.

5. Compute F, .. (Z,.,) and use this as ;. Return to step 3 until step 4 terminates.

Note that an initial guess of Z = 0 converges on the smallest real root. An initial guess of Z =1
almost always converges on the largest real root. At very high reduced pressures, an initial guess

greater than one is sometimes required since the compressibility factor can exceed one (see Fig. 7.4

26
on page 257).



Analytical Solution

The other choice we have for solution of the cubic is to analytically obtain the roots as detailed in
Appendix B. The method varies depending on whether one or three roots exist at the pressure of
interest. Solutions are implemented in a spreadsheet (Preos.xIsx) or a MATLAB script (Preos.m).
MATLAB includes a polynomial root finder, so the statement Zvals=rccts([1 a2 al alC])

jm| results in both real and imaginary roots. The argument in the “roots™ function is the vector of coef-
the :;z:'r::uﬁ?n: ficients for the polynomial in Z. In MATLAB, the ind§xes of the real roots can by found thith
Appendix B and index=find (imag(Zvals)==0) followed by selecting the real parts of the roots using
shows Zreal=real (Zvals (index)).

the intermediate cal-
culations.

Example 7.3 Peng-Robinson solution by hand calculation

Perform a hand calculation of the real roots for argon at 105.6 K and 0.498 MPa.

Solution: This example is available online and provides an example of hand calculation at the
same conditions as the next example.

htto://chetl cites/default/files/doc/supp/SugpExcel.odf
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http://chethermo.net/sites/default/files/doc/supp/SuppExcel.pdf

S-A.1. ADVANCED FEATURES IN EXCEL

Using Solver with Excel

Excel includes an “add-in” feature called Solver which can be used to solve single or multiple equations. The installa-
tion of the feature is optional. If it is installed, it will be listed under the Data ribbon in the Analysis group. A related
feature is called Goal Seek..., but it is less powerful since it can only solve a single objective function. (Goal Seck is
found under Data ribbon (Data Tools group)>What if analysis...). If Solver is not installed, use online help or find
some directions at http://chethermo.net in the section for Software Tutorials.

To solve an equation for a single variable, Goal Seck or Solver can be used. We will use Solver since it is the more
general tool, and use of Goal Seck is simple if desired, once Solver has been used. If you are using Solver with a
spreadsheet that has been protected, it must first be unprotected using Review ribbon>Unprotect....

Suppose we wish to solve

x2+2x =1

Although the solution may be quickly found by the quadratic formula, a spreadsheet will be created to illustrate the
technique that can be applied to more complex problems.

1. Create the following table, entering the labels in column A and the initial guess of 0 for x in cell B1.

A B
1 X 0
2 F(x)

2. Enter the following formula in cell B2: =B1#2 #2*B1 = 1. (Note that you may click on cell B rather than
typing the name as you enter the formula.)

3. Start Solver from the Data ribbon>Analysis Group. The Solver window will pop up as shown below in Fig-
ure S-A.1. The objective function (Target cell) is entered in the top entry box. For this example, enter B2 (or
click in the entry box, then click in B2). The radio buttons permit the objective cell to be maximized, mini-
mized, or set to a specific value. In this example, select “Equal to: Value of:” and put the number 0 in the
entry box. The Options... button controls the convergence criteria, but we won’t use that now. (For more infor-
mation on the options, search online help). The next entry box specifies the cells to adjust in the search for the
objective function. For this example, enter B1. (For multiple cells you can drag the mouse over the cell ranges.)

4. Click on Solve. Look closely at the information box that pops up when Solver has finished. Since numerical
techniques are used, Solver may have difficulty finding a solution for poor initial guesses or poorly defined
objective functions, and the box notifies of problems in this event. However, we are solving a simple exam-
ple here, and the answer is quickly found. The answer should be 0.414.
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Example 7.4 The Peng-Robinson equation for molar volume

Find the molar volume predicted by the Peng-Robinson equation of state for argon at 105.6 K
and 4.96 bar.

Solution: The critical data are entered from the table on the back flap of the text.

Preos.xIsx output is shown below. The state is in the three-root region, because the cells for the
one-root region are labeled #NUM! by Excel. Many of the intermediate calculations are also
shown. The volumes are 27.8, 134, and 1581 cm’/mole. The lower value corresponds to the lig-
uid volume and the upper value corresponds to the vapor. Note that Z is close to zero for the lig-
uid and close to one for the vapor.

The output from the Preos.m MATLAB script is also shown below. Though the default output
does not include intermediate values, they may be obtained by removing the “;” at the end of any
code line and rerunning the script.

Output from Preos.m:
argon Tc(K)= 150.9 Pc(MPa)= 4.898 w = -0.004
T(K)= 105.600000 P(MPa)= 0.4396000
Zvals =
0.8971
0.0759
0.0157
Z= 0.897123 0.015681
Vi{iem"3/mol)= 1588.066740 27.758560
fugacity (MPa)= (0.449384 (.4£498303
Hdep (J/mel)= -222.833032 -6002.507074

Pang-Robinson Equation of State (Pure Flid) Spreadsheel protected, but no password usad.
Properties
Gas Te (K) P (MPB)
ARGON | 1509 4.898 0.004
Intermediate Calculations
Current State JRoots Iﬁ(cm "MPa/molK) 8.314472 |
T (K) 1058 z v fugacity A 0.699801|a (MPa cm®/gmol®)
P (MPa) 0.498 cm”/gmol MPa P, 0.101266| 165184.2
answers for three 0.897123 158B.067| 0.449384| 0.368467|b (cm’!gmol)
root region 0.075938 134.4247, 1.124086| 19.92796
0.015681 27.75856| 0.449909 ugacity ratio )
& for 1 root region W 0.998832(B 0.01 1zsaI
oot hasa r fugacity

To find vapor pressure, or saluration temperature,
sae cell A28 for instructions
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Peng-Robinson Equation of State (Pure Flid)

Solution to Cubic

Properties

Gas Te (K) P. (MPa)

TARGON | 150.9 4.808 0.004

Current Slate Roots

T (K) 105.6 z v fugacity

P (MPa) 0.496 cm”/gmol MPa
answers for three . 0.897123 1588.067] 0.449384

root region 0.075938 134.4247
0.015681 27.75858| 0.449909|

& for 1 root ragion #NUM! #NUM! #NUM!

Z¥+ 8.2 + a2 + a, =0

oot has a lower fugacity

Spreadsheel prolected, but no password usad.

II_nlermediala Calculations

R{cm MPa/molK) 8.314472

T, 0.693801|a (MPa cm”/gmol®)

P, 0.101266| 165184 .2
0.368467|b (cm /gmol)

_____1.124086[ 19.92796

fugacity ratio 0.

0.998832|B 0.011258

To find vapor pressure, or saluration temperature,

sae cell A28 for instructions

a2z a1

& p

-0.988742

R=qM4+p27=

q If Negative, three unequal real roots,
0.083385 -0.001068 -0.242486{ -0.045187|If Posilive,

-1.76E-05

one real root

Method 1 - Forregion

with one real root

P Q

Root to equation in x |

#NUM! #NUM!

#NUM! |

Meathod 2 - For region

with three real roots

Solution methods are summarized
in the appendix of the text.

m 3g/pm

3'1 1

Rootls to equation in x

0.568607| 0.983181

0.183666| 0.061222

0.587542| -0.253642

-0.3139
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Example 7.5 Application of the Peng-Robinson equation

= Preos.xlsx, Estimate the specific volume in cm3fg for carbon dioxide at 310 K and (a) 8 bars (b) 75 bars by
Frece.m. the Peng-Robinson equation and compare to the experimental values of 70.58 and 3.90,
respectively.!

Solution: w =0.228, T, =304.2, P, =73.82, MW = 44 g/gmol,

(a) Z=0.961
V = ZRT{(P - MW) = (0.961 - 83.14 - 310)/(8 - 44) = 70.37, within 0.3% of the
experimental value.

(b) Z=0.492

V=ZRT/(P - MW)=(0.492 - 83.14 - 310)/(75 - 44) = 3.84 giving 1.5% error relative to
the experimental value.
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Pressure (bar)

Determining Stable Roots

sents the phase that will exist at equilibrium. When three roots are found, the most stable root has
the lower Gibbs energy or fugacity. At phase equilibrium, the Gibbs energy and fugacity of the
roots will be equal. Fugacity is closely related to the Gibbs energy and will be described in Chapter
9, but we will begin to use the calculated values before we explain the calculation procedures com-

pletely. When three roots exist, the center root is thermodynamically unstable because the deriva-
tive of pressure with respect to volume is positive, which violates our common sense, and is shown

250
dition for equilibrium between vapor and liquid roots occurs when the horizontal line on the P-V
diagram is positioned such that the area enclosed above the line is exactly equal to the area

200 + enclosed below the line. Even though the enclosed areas have different shapes, imagine moving
this line up and down until it looks like the areas are equal. The dots in the figure are the predictions
of the saturated liquid and vapor volumes, and form the phase envelope. The parts of the isotherms

150 1 that are between the saturated vapor and saturated liquid roots are either metastable or unstable.

100 + idly to the equilibrium state. The boundary between the metastable and unstable states is known as
the spinodal condition, predicted by the EOS by the maximum and minimum in the humps in sub-

50 critical isotherms. We will discuss more details about characterizing proper fluid roots when we
0 -+
-50 t t t t

0 100 200 300 400 500
Volume (cmslmol)
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7.7 IMPLICATIONS OF REAL FLUID BEHAVIOR

Example 7.6 Derivatives of the Peng-Robinson equation

) cC
Determine (

ar) ( Fia T,and( U) for the Peng-Robinson equation.

Solution: The derivatives (¢U/éV)y and (6C/EV) T have been written in terms of measur-
able properties in Examples 6.6 and 6.9, respectively, and have been evaluated for an ideal gas.
The analysis with the Peng-Robinson model provides more realistic representation of the prop-
erties of real substances. Beginning with the same analytical expressions set forth in the refer-
enced examples, a key derivative is obtained for the Peng-Robinson equation,

RTp ap? (é’_ _ _Rp p2 da
(1-bp) 1 +2bp-bp? Ty  1=bp 1+42bp-b2p*dl
2.2

eRe.a; 4,804AN03N-p is obtained by the second derivative:

(?_C_‘—’? 7( p) d2a —p2 ack‘[_&+ aTr
av ]+2bp b2p2d79 L +2bp-b2p2 2 \T. T

which approaches the ideal gas limit of zero at low density,

2
av) é p? [ da]_ e
a——| = otx aT],
( T(P) 1+2bp blpil  dT 1+2bp-b2p2[ /

which also approaches the ideal gas limit of zero at low density. We have thus shown that C}
depends on volume. To calculate a value of Cj; first we determine C = Cjf — R, where Cjf is
the heat capacity tabulated in Appendix E. Then, at a given {P. T}, the equation of state is solved
for p. The resultant density is used as the limit in the following integrals, noting as V' — «, p —
0, and dV = —dp/p*: This method is used for departures from ideal gas properties in Chapter 8.

aC (2 2 d? 2
C,=CF = I(( —(d JIsz,f b%«ﬂie i},(}}@ln“:ﬂiéizg]

o0

N [ ) a K [ a
where K+ (=
ar’)  2T’T, «/ J J

which approaches the ideal gas limit: lim (QI—’) =Rp = 1-2 . The volume dependence of Cp
P 0 T V V

a=[1+x(1 - [T)F

cw037464 + 1542260026992 0

T
b= 0.07779607R’7‘

c




7.7 IMPLICATIONS OF REAL FLUID BEHAVIOR

Example 6.6 Accounting for T and V impacts on energy

Derive an expression for (g%) in terms of measurable properties. (a) Evaluate for the ideal gas.
VT

(b) Evaluate for the van der Waals equation of state, P = RTAV — b) — a/V.

Solution: Beginning with the fundamental relation for dU,

dU=TdS - PdV
Applying the expansion rule
QL’) - & av
(aV r 7(;1:') T P (FD T 643
Using a Maxwell relation and a basic identity
51/) = 7% _
9. T(al;) P 6.46
(a) For an ideal gas, P =RT/V
2,5 -5 -
@, =% RT_p=o0 (ig)
Thus, internal energy of an ideal gas does not depend on volume (or pressure) at a given 7.
(b) For the van der Waals equation,
(3_ - _R_ (@g) - RT _(_._._RT _.‘3.2) - a (ig)
T v V—b, av. T -b V—-b vV V2

Example 6.9 Volumetric dependence of Cy for ideal gas

Determine how Cp-depends on volume (or pressure) by deriving an expression for (¢C,/&V) r
Evaluate the expression for an ideal gas.

Solution: Following hint #1 and applying Eqn. 4.30:

%)

By the chain rule:

(i’& 2(@)(@1) V[ﬁ_]
avir  \oT p\aV/r ar

Changing the order of differentiation:

((,CV

f‘T[f’ ]V ]D

For an ideal gas, P = RT/V, we have (ég) in Example 6.6:
s

A, =l
en\ar/ )y ~ an\V/,

Thus, heat capacity of an ideal gas does not depend on volume (or pressure) at a fixed tempera-
ture. (We will reevaluate this derivative in Chapter 7 for a real fluid.)

(ig) 6.51
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7.8 MATCHING THE CRITICAL POINT

2
5 A
(2—9 =0 and (f-f] =0 at T,P, 7.27
cprr ap2 r

Solve foraand b

in Van der Waals
Egn. for instance

0.03
RT a RT | ap
P==-"=E—ap? Z = - =L 7.12
V—-b 2 l—bp ap or (1-bp) RT nganderWaals

35

3

where o = molar density =



ture of the critical point: The vapor and liquid roots are exactly equal at the critical point (and the
spurious middle root is also equal). We can apply this latter insight by specifying that (Z — Z‘:)3 =0
=7 -3Z 72432277} =7° — a,7* + a;Z - a, (Appendix B). Equating the coefficients of these
polynomials gives three equations in three unknowns: Z_, 4, and B..

Z -(32)Z2°+ (3Z)Z-(Z) = 0 B.5I
If we compare Eqn. B.51 with Eqn. B.36 at the critical point, we find
—ay = 3Z,; a, =37 -ay=Z B.52
Z+ e+ aZ+ay =0 B.36

This is solved in appendix B2 p. 822

Thus, the van der Waals equation predicts a universal value of Z, = (0.375. Plugging this into Eqn.

B.56, we find
, RT,
? =5 B.58
8P,
and into Eqn. B.54,
2
~ 27(RT)
‘T 6P, B.59
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ture of the critical point: The vapor and liquid roots are exactly equal at the critical point (and the
spurious middle root is also equal). We can apply this latter insight by specifying that (Z— Z_)* = 0
=7 -327*+3227Z- 7} =7° - a,7* + a,Z - a, (Appendix B). Equating the coefficients of these
polynomials gives three equations in three unknowns: Z, 4, and B..

Example 7.7 Critical parameters for the van der Waals equation

Apply the above method to determine the values of Z,, 4., and B, for the van der Waals equation.

Solution: Rearranging the equation in terms of 4, andB we have:
0=2-(1+B)Z*+A Z-AB =0=2 - 3zcz +3zzz z}

By comparing coefficients of Z": (1) Z=(1 + B)/3; (2) A, =3Z; 2. (3)4 Be=
Substituting 4, into the last equation, we have: 3Z2B.=Z2%(1 +B)/3.

Cancelling the Z? and solving we have B, = 1/8 = 0.125. The other equations then give
Z.=0.375and 4, =27/64.

The solution is especially simple for the van der Waals equation, but the following procedure can
be adapted for any cubic equation of state:

1. Rearrange the equation of state into its cubic form: 7 — ayZ* + a1 Z - ay.

2. Guess a value of Z, (e.g., Z,~ 1/3).

3. Solve the equivalent of expression (1) for B,..

4. Solve the equivalent of expression (2) for 4.

5. Solve the equivalent of expression (3) for Z,.

6. If Z, = guess, then stop. Otherwise, repeat.
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7.9 THE MOLECULAR BASIS OF EQUATIONS
OF STATE: CONCEPTS AND NOTATION

It 1s feasible to develop equations of state based solely on fitting experimental data. If the fit is
insufficiently precise for a given application, simply add more parameters. We see evidence of this
approach in the Peng-Robinson equation, where temperature and density dependencies are added to
the parameter “a” in order to fit vapor pressure and density better. A more extensive example of
this approach is evident in the 32 parameter Benedict-Webb-Rubin equation that forms the basis of
the Lee-Kesler model. The TAPWS model of H,O is representative of the current state of this

approach. It is the basis of the steam tables in Appendix E.

Since about 1960, computers have made it feasible to simulate macroscopic properties based
on a specified intermolecular potential. With this tool, the procedure is clear: (1) Specify a potential
model for a given molecule, (2) simulate the macroscopic properties, (3) evaluate the deviations
between the simulated and experimental properties, (4) repeat until the deviations are minimized.
This procedure is straightforward but tedious. Each simulation of Z(7,p) can take an hour or so.
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7.9 THE MOLECULAR BASIS OF EQUATIONS
OF STATE: CONCEPTS AND NOTATION

The original BWR equation (edi)
Co 0>

P = pRT+(BoRT — Ao - ﬁ) P*+(bRT — a) p*+aap’+ - 2 (1 + P )cxp (—”rpz)

The BWRS equation of state (ed

A modification of the Benedict—Webb-Rubin equation of state by Professor Kenneth E. Starling of the University of Oklahoma:™®!

Co D Eo\ . d\ . d F .
P=pRT+(BORT—.~lO— D = - 0)p2+(bRT—a—T)p3+a-<a+ T)p+ I (1+",‘p2)exp(—

T2 7 T3 ~ T4 T2

p = the molar density.

Values of the various parameters for 15 substances can be found in Starling's Fluid Properties for Light Petroleum Systems..

The Modified BWR equation (mBWR) (edit

A further modification of the Benedict-Webb-Rubin equation of state by Jacobsen and Stewart:1*

9 15
P = Z @ p" + exp (_,\’,pZ) Z a~np2n—17

n=1 n=10
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7.9 THE MOLECULAR BASIS OF EQUATIONS
OF STATE: CONCEPTS AND NOTATION
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The Lennard-Jones potential.

ufr) = 4(a'r)'* — (o/r

Note that £ >0 is the depth of
the well, and & is the distance
where u(r) = 0.

The square-well potential
for A= 1.5.

[m ifr<o
—cifo<r<io

u(r) =
10 ifr>Ac

The Sutherland potential.

» wifr<o
u(r) = :
—&(o/r)ifr>o

Figure 1.1 Schematics of three engineering models for pair potentials on a dimensionless basis.



How do molecular parameters relate to EOS
e.g. VYDW EOS

VDW EOS PREOS

p- RT _a _ pRT _, p— _RTp __ ap’
V-b 32 1-bp (1-bp) 1+ 2bp—b2p?

Molar volume and b
Voot = 41113 = 4n(a/2)°3 = 1 /6; N, =b 7.28

Example 7.8 Estimating molecular size

Example 7.4 shows that 5 = 19.9cm3/mol for argon. Estimate the diameter (nm) of argon
according to the Peng-Robinson model.

Solution: N;75°/6 = 19.9 cm3/mol; &° = 6(19.9cm3/mol)(1mol/602(10")molecules)(10*' nm?/
em?)/z. Thus, o = 6(19.9)/(6027) = 0.06313 nm*; o= (0.06313)"* = 0.398 nm.

Packing factor (0 to 1) e =pb=b/V

VDW EOS
Z=1/(1-np) — (a/bRT) np So, a/b is attractive energy in J/mole
a/lb=Na &
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P = RT a _ pRT 2

= —ap
V—-b 172 1-bp f
AR __I__—QE 7
(1-bp) RT N _—_fd\’\\//v
A 1.38g;cc
_ o 1.2 ,
Zy = 1/(1-bp) bl Slope in 1/T Due to

Repulsive Interactions N Attractive Interactions

Z=PV/RT = P/pRT

0 ——— 0 Y,
0 2 4 6 8 10 12
1000/T (K)

Figure 7.7 Compressed liquid argon. Experimental data from NIST WebBook. Dashed lines
characterize the van der Waals model and solid lines correspond to molecular simu-
lation of the square-well model with /. = 1.7. The manner of fitting the molecular
parameters (a and b or £ and o) is described in Example 7.9.
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P_

Corresponding States in Molecular Dimensions

As engineers, we would like to get results faster. One idea is to leverage the principle of corre-
sponding states. We know that ¢ has dimensions of J/molecule, so N & has dimensions of J/mol.
Therefore, RT/(N &) would be dimensionless and serve in similar fashion to the usual reduced tem-
perature, 7/T,. Similarly, the molecular volume, v, ;. has dimensions of cm/molecule and N Vol
has dimensions of cm®/mol. Therefore, Nv, ;0 would be dimensionless and serve in very similar
fashion to the usual reduced density, p/p,.. Another idea would be to tabulate the dimensionless
properties from the simulation at many state points, then interpolate, similar to the steam tables.
The interpolating equations might even resemble traditional equations of state in form and speed.
The difference would be that they retain the connection between the nanoscopic potential model
and macroscopic properties. In other words, we can engineer our equations of state to be consistent
with specific potential models by expressing our “reduced” temperature and density using molecu-
lar dimensions. Then the principle of corresponding states can be applied to match the £ and ¢ for a
particular molecule in the same way that we match a and b parameters in the van der Waals model.

RT a _ pRT 2 p=_RIp _ ap?
B 72 —ar 1-b 22
V—-b 172 1-bp (1-bp) 1+2bp—b2p
Voot = 411213 = 4n(a/2)°3 = 1o /6; Ny, =b 7.28

Example 7.8 Estimating molecular size

Example 7.4 shows that » = 19.9cm3/mol for argon. Estimate the diameter (nm) of argon
according to the Peng-Robinson model.

Solution: N, 7c°/6 = 19.9 cm3/mol; &° = 6(19.9cm3/mol)(]mol/6(')2(10?'')molecules)(lO2l nm3/
cm?)/z. Thus, & = 6(19.9)/(6027) = 0.06313 nm?; &= (0.06313)"* = 0.398 nm.




equation includes (1-bp) in the denominator, forcing divergence as this limit is approached. The
prevalence of this combined variable suggests that we give it a special symbol and name, 77, = bp =
b/V, the packing efficiency (aka. packing fraction).'?

Finally, we should consider the square-well energy parameter, &, and the van der Waals param-
eter, a. Applying Eqn. 7.13 indicates that the dimensions of the “a” parameter are J-cm®/mol®. We
can rewrite the van der Waals equation as Z = 1/(1-7p) — (a/bRT) 1jp In this format, it is clear that
the combination of variables “a/b” represents an attractive energy in J/mol. In other words, a/b ~
N se. Another shortcut for quickly transforming from the macro scale to the nano scale is to recog-
nize that &/k = N &/R and both have dimensions of absolute temperature, K. In this context, the
combination of variables &/kT = f¢ is an especially convenient characterization of dimensionless

reciprocal temperature, where f=1/kT. 5 EA—
) 05 u(r) = 4ef(aln)' ~ (/)]
ue 0

Note that ¢ >0 is the depth of
051 the well, and & is the distance
-1 4 where u(r) = 0.

-15

00 05 10 15 20 25 30
rlo

15
10 The square-well potential
05 for 2=1.5.

u/e 0.0 —

05 wifr<o
u(r) = 1—<¢ifo<r<io

-1.0 .
15 0ifr>Ac
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Example 7.9 Characterizing molecular interactions

Based on Fig. 7.7, trend lines indicate y-intercept values of, roughly, 5.7 and 4.7 when fit to the
isochoric PV'T data for argon at 1.38g/cm® and 1.25 g/cm?, respectively. Similarly, the x-inter-
cepts are roughly 11.2 and 9.5, respectively. Use these values to estimate the EOS parameters.

(a) Estimate the values of @ and b at 1.38 g/cm® according to the van der Waals model.

(b) Predict the values of x- and y- intercepts at 1.25 g/cm? using the @ and b from part (a).

(c) Suppose the square-well simulation data can be represented by:

Z =144 np/(1-1.9 np)-15.7 np Pe/(1-0.16 np)

Estimate the values of o and &/ at 1.38g/cm? and predict the x- and y-intercepts at 1.25 g/em’.
Solution:

(a) At 1.38g/cm’, y-intercept, Zy = 1/(1 — p) = 5.7=>np=1-1/5.7=0.825 = bp.

b = 0.825-39.9(g/mol)/1.38(g/cm’) = 23.9 cm?/mol.

At the x-intercept, 0 = 5.7 — (@/bRT) np = 5.7 — (a/bRT)-0.825 => a/bRT = 5.7/0.825 = 6.91.
Using the x-intercept to determine temperature, 1000/7=11.2 => T=1000/11.2 = 89.3K =>
a=23.9(8.314)89.3(6.91) = 123 kJ-cm*/mol?.

(b) At 1.25 glem®, np=23.9(1.25)/39.9 = 0.7487 == Z, = 1/(1 — yp) = 4.0 = y-intercept.

At the x-intercept, 0 = 4.0 — 123000/(23.9RT)-0.7487 = 4.0 —463/T=> T = 463/4 = 116.
Therefore, the x-intercept is 1000/7"= 1000/116 = 8.6. These x- and y- intercepts form the basis
for the dashed line in Fig. 7.7 at 1.25 g/cms. The prediction of the van der Waals model is poor.

(c) The procedure for finding & and &/k is similar. At the 1.38g/cm?,
Zy=14+4n/(1-19np)=5T7=np(4+4.71.9)=4.T7=>np=0.363 =bp
b=0.363-39.9/1.38 = 10.5 cm*/mol = N, 7°/6 => ¢ = 0.322 nm

At the x-intercept, 0 = 5.7 — 15.7(0.363)pe/(1 — 0.16-0.363) == fie = 0.942;
1000/T=11.2=>T=1000/11.2 = 89.3K == &/k = (0.942)89.3=84.1 K

At 1.25 g/em?, following the same procedure:

np=10.5(1.25)/39.9 =0.329 => Z, = 1 + 4np/(1 — np) = 4.5 = y-intercept.

At the x-intercept, 0 = 4.5 — 15.7(0.329)fe/(1 — 0.16-0.329) = 4.5 — (5.452)fe == fe = 0.827

=> T = 84.1/0.827 = 102. Therefore, the x-intercept is 1000/7'= 1000/102 = 9.8. These x- and y-
intercepts form the basis for the solid line in Fig. 7.7 at 1.25 g/cm3, and the prediction is quite
good.
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Molecular Simulations for EOS

Collision of two particles in 2D

Figure 7.8 Molecular collision in 2D. The dashed disk is a
disk image that will be discussed in the text.

my (vi°) =my vi2+ my vy’ Kinetic energy conserved (elastic) 7.29
m; v\° =m, v, cos O+ m, v, cos 0, x-momentum conserved 7.30
0 =m,v,sin O+ m, v,sin 0, y-momentum conserved 7.31
sin O,= (3, =yl 7.32
0, — 6, = 90° (Note that 6, < 0.) 7.33
vy =v;°cos bh; vy = J(v )2 — v2 : V5 8In (h=—v| sin 0, 7.34

i = (L —x;— o2)v;, 7.35 46



Example 7.10 Computing molecular collisions in 2D

Let the diameters of two disks, o, be 0.4 nm, the masses be 16 g/mole, and the length of the
square box, L, be Snm. Start the disks at [1.67 1.67], [3.33 3.33] and initial velocities (nm/ps):
[0.167 0.222], [-0.167 —0.222] where 1 nm = 10 m and 1ps = 10"'?s. Note that the gas con-
stant 8.314 J/mol-K = 8.314 kg-nm%/(ns*mol-K) = 8.314(107) kg-nm?/(ps>-mol-K).

(a) Compute the temperature (K).

(b) Compute the collision times with the walls.

(c) Compute the collision times with the disks. Which event occurs first?
(d) Compute the velocity vectors (m/s) after the first collision event.

Solution:

(a) Typ = M, <v*>/(2R); <v*> = (0.167% + 0.2222 + 0.167% + 0.222%)/2 = 0.07717
Ty = (0. 016kg/mol)(0 07717 nm?/ps®)/(2-8.314(10°°) kg-nm?/(ps>mol-K)) = 89K.

(b) The collision time with the walls depends on the wall being approached. Note that the molec-
ular coordinate will be within 0.5 = 0.2 nm of the wall coordinate when a wall collision
occurs. Diskl1 is approaching the north wall and cast wall (using superscripts to denote geo-
graphic directions), the collision times are 1,V = (4.8 — y, )/vl = (4 8-1.67)/0.333 =9.40ps,
HE =48 -x," x=@48-1 67)/0 222 =14.1ps. Slmllarly, S =(0.2-y, vy =
(0.2 - 1.67)/(=0.222) = 6.62ps; 1,7 = (0.2 - x, Wy, =(0.2-3.33)/(-0.111) = 28 2ps.
Molecule 2 collides with the south wall first among wall collisions.

(c) Translating by Eqn.7.36, x2 =y, =3.33 — 1.67 = 1.66. Translating the velocities to make
molecule 2 stationary: v "= 0.167 — (-0.167) = 0.334. v, ;! = 0.444. Using Eqn 737, ¢, =
tan (v, ,'/v, r) tan'(0.444/0.334) = 53.13°.4, = tan"'(1.66/1.66) = 45°. r,' = 1. 66(2)"’2 B
2.35nm. x," = 2.35 cos(45 — 53.13) = 2.326; y," =235 sm(45 53.13) =-0.332. Since
lyz"| < o, these molecules do collide. By Eqn. 7.40, #, = sin ' (~0.332/0.4) = —56.10°. Then,
x;© = 2326 — 0.4 cos(-56.10) = 2.103; noting v;," = (0.334%+0.444%)" = 0.5556.
115" =2.103/0.556 = 3.78 ps. So the intermolecular collision occurs first.

(d) Computing the velocities after collision requires Eqn. 7.34, noting by Eqn. 7.33 that ; = 90
~56.10 = 33.9. v, = v,"cos 0, = 0.5556 cos(—56.10) = 0.3099, v, = (0.5556°— 0.3099%)"* =
0.4612. Also note that Eqn. 7.34 gives only the magnitude of the velocity and we are still in
the reference frame of Fig. 7.8. Rotating to the original reference frame: v; / = v\cos(g, + 0,)
=0.4607 cos(33.9 + 53.13) = 0.0239. v, f=0.4607 sin(33.9 + 53.13) = 0.4605; vzyxf— Vo
+v,” —v”f —0.167 +0.167 - 0.0239 =—-0.0239. v, / =-0.222 + 0.222 - 0.4605 =
—0.4605. Finally, we update all the positions to the time of the collision. x/ = [1.67 +
0.167-3.78 1.67 + 0.222-3.78] = [2.301 2.514]; x5/ = [3.33 — 0.167-3.78 3.33 — 0.222-3.78] =
[2.695 2.486]. From this point, the procedure for the next collision is exactly the same.

In retrospect, a major oversimplification of this problem deserves comment. By restricting
the system to two particles, it is necessary that the components of velocity be equal and
opposite in sign. Otherwise, the system itself would have a net velocity. You should not mis-
take this equality as a general result. If there were three particles, for example, the velocities
would sum to zero, but the individual magnitudes could vary quite substantially.

47



Analyzing MD Results
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Figure 7.9 (a) The hard-sphere potential as a special case of the square-well
model; (b) results of DMD simulations for the hard-sphere potential
compared to simulation data of Erpenbeck and Wood cited in the text.

The results of hard-sphere simulations by Erpenbeck and Wood'® are presented in Fig. 7.9(b).
Three equations of state are compared to the simulation results: the van der Waals model, the Car-
nahan-Starling model, and the ESD model. These models are listed below, along with another

called the Scott model.
75 = 1/(1 — np); the van der Waals model 7.45
77 = (1 + 2np)/(1 — 2 p); the Scott model 7.46
75 = 1+ 455/(1 — 1.97p); the ESD model 7.47
715 =1 + 4np(1 — 5p/2)/(1 — 5p)*; the Carnahan-Starling model 7.48
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Example 7.11 Equations of state from trends in molecular simulations

Use the 3D DMD module at Etomica.org to characterize the trends of the attractive contributions
for argon with 2 = 1.7 at densities of 1.25 and 1.38 g/cm® assuming a diameter of 0.323 nm and
&/k = 87 K. Use the results to obtain a cubic equation of state.

Solution: It is straightforward to set a diameter of 0.323nm, N, &= 87-8.314 =723 J/mol, MW =
40, and 4 =1.7. For purposes of this problem, we assume the ESD form suffices over the density
range of interest with the objective of obtaining a cubic equation.

The next step is to simulate the full potential and solve for the attractive contribution by subtrac-
tion. Fig. 7.7 suggests that a linear function in fe should suffice, and we know that the attractive
contribution increases with density. These observations suggest an equation of state of the form
Z=1+4np/(1 =19 np) -z np pe,
where z;, designates a constant corresponding to first order in both #p and fe. By regressing the
slope of the attractive contribution at the two given densities, we can characterize z;, as a function
of density. We can also infer the zero density limit of z,; from the second virial coefficient as
2,,(0) = 4(;* — 1) = 15.7. The results of these characterizations give z;; = 16.3 at 5, = 0.333 and
17.0 at #p=0.367. In order to obtain a cubic equation, we must restrict our attention to equations
of the form,
zp =211(0)/(1 — 22 1p)-
Plotting z,,(0)/z,, and fitting a trendline gives z,, = 0.16 and the final model is,
Z=1+4np/(1-1.9np)—15.7 np fe/1—0.16 np)

This fit of the attractive trend is crude, but it would be difficult to improve given the constraints
imposed by the cubic form. This leaves the door open to future improvements beyond the cubic
form. The approach would be similar, however.
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7.11 THE MOLECULAR BASIS OF EQUATIONS

OF STATE: ANALYTICAL THEORIES
The Energy Equation

_ Nyp
U-U'e = Z=[Nu g(r) 4nridr 7.49
0

r 17¢ N /) N ,u
LR;’ ~ ; R4T°(z)4m dr 7.50

0
where u is the pair potential and g(r) = the radial distribution function

The Pressure Equation

o 4]

72N
P = pRT-" [, (‘;”‘) o(r) 412 dr 751
0
%0
PN 4 N 47 ¢ du

0
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An Introduction to the Radial Distribution Function
The Fluid Structure of an Ideal Gas

Consider a fluid of point particles surrounding a central particle. What 1s the number of particles in
a given volume element surrounding the central particle? Since they are point particles, they do not

dN,, = Nd—;'/ (ig) 7.53

where dNj; 1s the number of particles in the volume element, N is the total number of particles in the
total volume, ¥ is the total volume, dV is the size of the volume element, and dN,= N, p dV

If we would like to know the number of particles within some spherical neighborhood of our cen-
tral particle, then,

dV=4zr dr

where r is the radial distance from our central particle,

.'\"C R,
N, = IdNV =N AJ' o4 r2dr (ig) 7.54
0 0

where R defines the range of our spherical neighborhood, N, is the number of particles in the
neighborhood (coordination number). ot



The Fluid Structure of a Low-Density Hard-Sphere Fluid

RO
N, = NApJ' o(r)4 ridr 7.55
0
"\"C Ro
N, = _[dN,, - NAI P4 r2dr (ig) 7.54
0 0

where g(r) 1s our average “weighting function,” called the radial distribution function. The radial
distribution function is the number of atomic centers located in a spherical shell from » to » + dr
from one another, divided by the volume of the shell and the bulk number density.

gr) 1T
g 4 |
0 0 0
1 Vo 0 1 i 2
Figure 7.11 The radial distribution function for the low- Figure 7.12 The radial distribution function for the bce hard-sphere fluid.

density hard-sphere fluid. 52
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Figure 7.13 The radial distribution function
for the hard-sphere fluid at a
packing fraction of bp = (.4.
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The Structure of Fluids in the Presence of Attractions and Repulsions
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The Lennard-Jones potential.

ufr) = 4¢(ain)'? - (o)

Note that &£ >0 is the depth of
the well, and & is the distance
where u(r) = 0.

The square-well potential
for 2=1.5.

[ac ifr<o
u(r) = 1—<¢ifo<r<ioc
IO ifr>Ac

The Sutherland potential.

o wifr<o
ur) =
—e(o/rSifr>o

ing models for pair potentials on a dimensionless basis.
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The Virial Equation

Z=14Bp+Cp +Dp” +...

oo
, 2
B=2,VJ(1— (—i)) dr
‘zfAO exp\~) )7

7.58

7.59
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Example 7.12 Deriving your own equation of state

Appendix B shows how the following equation can be derived to relate the macroscopic equation
of state to the microscopic properties in terms of the square-well potential for A = 1.5.

47N, po
Z=1 +ﬂ+p{g(a+)— 1.53[1 - exp(—&/kTg(1.507)]} 7.60

Apply this result to develop your own equation of state with a radial distribution function of the
form:

exp(—u/kT)
(1-2bp/x®)(1 +2Sbp/x5)

where x = /o, b= 7N Ao3 /6, and § is the “Student” parameter. You pick a number for S, and this
will be your equation of state. Evaluate your equation of state at &/AT= 0.5 and bp = 0.4.

g(x) = 7.61

Solution: At first glance, this problem may look outrageously complicated, but it is actually
quite simple. We only need to evaluate the radial distribution function at x = 1 and x = 1.5 and
insert these two results into Eqn. 7.60.

+y = exp(e/kT) |

8(°) = T2y (1 + 2567 7.62

2(1.507) = exp (£/kT) 7.63
(1-0.1765hp){1 +0.176Sbp}

7= 1+ —3bp_exp(e/kT) _ 13.5bp[exp(e/kT) — 1] _

1-2bp 1+28bp  (1-0.176bp)(1 + 0.176Sbp)
Supposing S = 3, Z(0.5,0.4) = 1 + 4-0.4-1.649/(0.2-2.4) — 13.5-0.4-0.648/(0.789-1.211) = 2.83.

Congratulations! You have just developed your own equation of state. Have fun with it and feel
free to experiment with different approximations for the radial distribution function. Hansen and
McDonald® describe several systematic approaches to developing such approximations if you
would like to know more.
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